
402 (z) = ~-~ 14a cos ~ + sin 2 (kz + cto), 

E [ -- ___F3(Y*)] s in2 (k z+ao)+  4p~(z) =~w 2(1 - a c o s 6 )  F2(y*) 3 tn t*  3 Wl 

D . + ~ 3 '  [ 2 a c o s b ' G t ( y * ) -  DG2 (y*) l sin 2 (kz + ~o), 

O 4 7 a c o s b + - -  c o s 2 ( k z + a 0 ) ,  O0 (z )  = 24o 

[ 3 J3(Y*)] cOs2(kz+~176 E 3.r, (y*)  + 2 (1 - a cos ~) .r~ (y*) - ,,-7 
0 5 (Z) = 4wy* 

*2 
Oy [2a cos ~'I1 (Y*) - DI2 (y*) ] cos 2 (kz + Cto): 

4 
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RADIATION OF INTERNAL GRAVITATIONAL WAVES IN THE CASE OF UNIFORM 

MOTION OF SOURCES OF VARIABLE AMPLITUDE (THE PLANE PROBLEM) 

V. A. Gorodtsov UDC 532.58 

A uniformly moving source generates waves similar to Cherenkov radiation. In a liquid 
with stratified density these are internal gravitational waves. A fixed oscillating source 
generates another type of radiation of gravitational waves. When a source of variable ampli- 
tude is moving the variety of excited waves increases. Wave-forerunners appear which carry 
away energy in the direction of motion with a velocity exceeding the velocity of the source. 

The linear wave fields around an oscillating moving source were analyzed in [1-7] for the 
simplest types of stratification, a free surface and a discontinuous jump in the density. 
Below we estimate the energy losses of such sources for a more general form of stratification. 
The method of energy estimates also enables one to investigate more simply the main known and 
certain additional features of the radiation in the case of discontinuous stratification. 

In considering a mass source with an harmonically varying amplitude, moving uniformly 
horizontally in a stratified incompressible liquid, we will confine ourselves to analyzing the 
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plane problem. Beginning with the case of discontinuous stratification (a free surface, in 
particular) of infinite and finite depth, we will then consider the radiation of waves in a 
waveguide of finite depth with an arbitrary stratification and in an unbounded uniformly 
stratified liquid. The number of excited modes increases rapidly as the stratification be- 
comes more complicated. 

i. The Potential Flow of a Piecewise-Uniform Liquid. The velocity potential ~ is found 
by solving Poisson's equation with a moving oscillating mass source 

~ = V , v  = m ( t , x , z ) =  mo(x - ~ t , z )  e x p ( - i ~ o t ) ,  

supplemented by the boundary conditions that the perturbations of the velocity v = V~ should 
fall off far from the source, that the vertical component of the velocity on the horizontal 
solid bottom should be zero, and the pressure and vertical displacement on the surface of 
a jump in density should be continuous. 

For an arbitrary distribution of the sources, the solution can be represented by an 
integral convolution of the sources with a Fourier transformation with respect to the delay 
of Green's function G(t, x; z, z') 

~ ( t , x , z )  = e x p ( - t o o t ) f  d x ' d z ' g ( x - v o t - x ' ; z , z ' ) m o ( x ' , z ' ) ,  

g (x; z, z') = f dr' G (t', x + vet'; z, z') exp (i~ot'), 

which is a solution of the same problem for an instantaneous point source with the delay 
condition 

G (t - r ,  x x ,  ~, z ' ) I ,< , ,  = o .  

The latter ensures the causal nature of the connection between the perturbation fields and 
the source and ensures that the appropriate radiation conditions are automatically satisfied. 
Thanks to the delay condition, the Fourier transformation with respect to time for Green's 
function can be extended analytically to the upper half-plane of the complex frequencies, 
which enables its unique expression to be obtained quite easily. For example, in the case of 
a jump in density of an amount 7 m (P2 - Pl)/(P2 + Pl), with z = 0 in the remaining uniform 
unbounded liquid 

I 
G~k(z, z ' ) =  T ~ - { t  sgn zexp  [ - [ k J  (l~l + I ~ ' 1 ) 1 - e x p  [ -  Ikl I~-~'l~l + 

1 + 7 ?gsgn  z (? + sgn z') exp [- J~l (Izl + Iz't)] 
( ~ + i 0  2 VgI~I ' 

( d~ d~ a~k (z, z') exp (ikx - l~t). G (t, x; z, z') = d (2~) - - T  

The velocity potential of a point source of variable amplitude ~ = g(x - v0t; z, z') x 
exp (-i~0t) moving uniformly at a depth z', can be expressed in terms of the single integral 

4~g (x; z, z ')  = In {J~ + (14  + I ~ ' I ) T  ~'~ tx ~ + (~ - z ' f t  -~} + 

+ ?g sgn z (? + sgn z ' ) f  dk 
exp l![(J Z~ Z + l z ' l) l  

( ~  + ~ o  + i~) 2 - vg I kl ' 

the behavior of which is determined by the roots of the denominator as ~ § 0. Their number 
varies from two to four as a function of the values of the velocity v 0 and the oscillation 
frequency m0. An asymptotic analysis of the solution in the special case of a free surface 
(Pl § 0) is given in [i-5], and a generalization for internal waves on a jump in density is 

given in [5-7]. 

We will now estimate the energy loss per unit time due to radiation of waves from a 
moving oscillating mass source, averaged over the oscillation period. Using the expression 
for the pressure in terms of the time derivative of the potential (the linear theory) we ob- 
tain an integral representation of the loss as a quadratic form with respect to the source 
(the calculations are carried out with a real source Re m= m0cos~) 

2~1~ 0 

(W) m-2-~ dt d x d z p m =  - d ~ - ~  d z d z ' d k p ( z )  m o ( - k , z ) m o ( k , z ' ) I m G ~ k ( Z , Z ' ) ~ ( ~ - J ~ o  + ~ol ) ,  
0 0 

in which the imaginary part of the Fourier transform of Green's function occurs (it is as- 
sumed that zz' > 0). It is concentrated on the dispersion surface of the linear interval waves 
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lm G+~(z, z') = - 2 7gsgn (o+z) (y + sgn z') exp [ -  Ik[ (I+I + I+'I))+ (~+ - vg I+l), 

and finally in the formula for the loss the product of two 6-functions occurs, which en- 
sures that the two integrations over the frequency and the wave number for arbitrary source 
distributions are satisfied. 

Using the known formula of the theory of generalized functions 

~ (f (x)) = ~ ~ -~ (x - x3, / (x3  = 0  

the product of the 6-functions is converted into a sum over four different wave contributions: 

(o, - I ~o + ~ o l )  ~ ( ~  - vg I ~ l) = ~ ~ (~ - ~ )  z t~I t,,o - ~ ~ ~  ( ~  + ~o) f ' q ~ ~ '  
i=~ 

which leads to a corresponding expansion of the loss of energy by a source moving along one 
of the sides of the layer of the jump in density (for motion upwards ~ = p~ and a minus sign 
and downwards 9 = ~ and a plus sign): 

( w )  = ( w ,  + w2) H (v. - re) + (w3 + w~), 

(wj)  = ;' (l T ~) ~ 1..o,l 2 
16 Iv0 - cgrsg .  (o,0 + k: '0)[  ' 

7g 

4o0 

For low subcritical velocities of motion of the source (v 0 < v,) the total losses are 
summed from the contributions of all four systems of waves, corresponding to the two positive 
and two negative roots: 

k u = ~  1-+ k3:= ,~02 +--~. T 1  

For  one o f  t h e  two t y p e s  o f  waves t r a v e l i n g  in  t h e  d i r e c t i o n  o f  mo t ion  ( w i t h  k 1 > 0 and 
k 2 > 0) which  a r e  o n l y  r a d i a t e d  f o r  s u b c r i t i c a l  v e l o c i t i e s ,  t h e  g roup  v e l o c i t y  Cg~ = c2 /2  = 
v 0 / ( 1  - ~/1 - vo/v,) ,  made up o f  h a l f  t h e  phase  v e l o c i t y ,  e x c e e d s  t h e  v e l o c i t y  o f  t he  s o u r c e  
( t h e  wave- f o r e r u n n e r  ) .  

At s u p e r c r i t i c a l  v e l o c i t i e s  (v  0 > v , )  t h e  p o s i t i v e  r o o t s  d i s a p p e a r  (become complex)  and 
o n l y  r a d i a t e  waves w i t h  n e g a t i v e  phase  v e l o c i t i e s  in  a d i r e c t i o n  o p p o s i t e  t o  t h e  d i r e c t i o n  o f  
mo t ion  o f  t h e  s o u r c e .  Under s t a b l e  s t r a t i f i c a t i o n  c o n d i t i o n s  (0 < 5' < 1) t h e  s u p e r c r i t i c a l  
mode i s  more e a s i l y  a c h i e v e d  f o r  i n t e r n a l  waves t h a n  f o r  waves on a f r e e  s u r f a c e  (y = 1) .  

For  a l l  modes on t h e  s u r f a c e  o f  d i s c o n t i n u i t y  o f  t h e  d e n s i t y  in  an unbounded l i q u i d  t h e  
g roup  v e l o c i t y  Cg i s  h a l f  t h e  phase  v e l o c i t y ,  and t h e  f o l l o w i n g  r e l a t i o n s  h o l d :  

1 o~ 0 
[ r e -  cg, sgn (to o + k/re)[ = ~ [ r e -  "~-+ [, 

.o.+v,, 0 .o) +o< ,,(, V o - k u  ~u  - ~ ,  , vo t3: - 

(w~) = ~( l  T v ) o g  1~,~.l 2 Ik~t 
8 Iooki - ~ol ' 

+ 

which enables us to simplify the comparison of the contributions of different modes to the 
losses 

<w2--7= t~0212 ' (w4) = ) ~ 1 2  T+ ' 

For  t h e  s i m p l e s t  m u l t i p o l e  s o u r c e s  t h e  r a t i o s  [~,[2/[~o~-§ a r e  p r o p o r t i o n a l  t o  t h e  p r o d u c t  o f  
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power and exponential functions of the wave number. For example, for a point source and a 
point dipole 

mo(x,z)= moa(x)5(z-zo), ~o= moexp( - lk~ l ) ,  
m0(x,=)=- d0a'(x)a(z-z0), ~0= - ~4exp(-Ik~l). 

We will first discuss the simplification for the case of motion close to the surface 
of the jump (z0 § 0). For very low velocities (v 0 << v,)the two wave vectors k z : --k, :xg/v~ >> 
k 2 z -k 3 that are close in value will not be small; they determine the loss in energy 

4 ~ "  

In the subcritical band the root k 3 remains much smaller than k, (k4/k 3 > 5 even for 
v 0 = v,). The positive roots merge on approaching the critical velocity (k I z k 2 z yg/ 
(4v~)), and their contributions to the losses have a resonance form due to the fact that 
v0 -- ~0/kz,2 vanishes. For this reason they are more important than the root of higher 
value k 4 (when v 0 z v, we have Ik41 > 5k I) and determine the losses 

<HO = (l Tv) ~gp I~o~12 ,V I ~ ,  
8vo v ,  - V 0 

The singularity requires a more refined nonlinear consideration. 

On changing to supercritical velocities the two remaining negative roots (Jk4J > Ik3J) 
merge as the velocity increases and when v 0 ~ v, they give 

(I T y) V~ I ~04 J 2 ~0 
<W)= ~,0 , k ~ = k ~  ~o 

The change in the relative contributions of different waves with depth of the source is 
determined by the above-mentioned competition between the power and exponential relationships. 
For example, for a point dipole 

<~) = g exp{2 I~o I  (I~I - Ik, l)} 

and in the region of the surface a lower contribution will correspond to the longer wave 
(with lower Ika[). However, because of the slower attenuation with depth of the longer 
wave it turns out to be more important when the source is fairly deep. Hence, when an oscil- 
lating source moves at a depth the main energy losses may be due to the excitation of longer 

waves. 

2. Layers of Finite Dept h . There is a quantitative complication if the finite depth 
of the liquid is taken into account, but the qualitative features remain the same. As be- 
fore, a moving oscillating source may generate from two to four modes (when the free surface 
and jump layer is taken into account the number of possibilities is doubled). 

We will confine ourselves to the example of a layer of uniform liquid of depth h with 
a free surface. The average losses of energy, as before, are determined by the imaginary part 
of the Fourier transform of Green's function 

=~ I * I  (h - , )oh I~I ( h -  ~') a (~2 _ g Ikl th kh). Im G~k (z, z') = - ~g sgn 
ch 2 lkl h 

Thanks to the two 6-functions the loss integral 

~ IM~ a ( J  Ikl th Ikl h) a (~ I~o + ~oI )  
0 

dzmo (k, z) cb 1~1 ( h  - z) 

r e d u c e s  t o  t h e  sum o f  t h e  c o n t r i b u t i o n s  o f  w a ve s  d e f i n e d  a s  t h e  s o l u t i o n s  o f  t h e  e q u a t i o n s  

o~ : vg Ikl th 141 h = I~o + ~ol. 
Here two or four solutions are also possible depending on the velocity of the source and the 
pair of positive solutions disappear in the supercritical mode. One of these corresponds to 
wave-forerunners with a groUp velocity exceeding the velocity of thesource. However, there 
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- % / v  o 

/ 

Fig. 1 

are no simple explicit analytic formulas for each separate solution, and a graphical repre- 
sentation becomes more convenient. 

According to Fig. i, the solutions kl > k 2 > k 3 > k 4 are determined by the points of 
intersection 1-4 of the w = Jglk[ tanh [klh curve with the straight lines co = -+(m0 + kv0). 
These straight lines in the supercritical situation, when the points 1 and 2 disappear, are 
represented by the dashed lines. In parametric form (the dimensionless parameter q is equal 
to the product of the wave number and the depth) the dependence of the critical velocity v, 
on h and COo is represented as follows: 

?~* 1 + 2o~o = q 1 - ~ -  q s ~ q '  g q s - ~ o "  

It takes a simple form at large depths and low frequencies: 

g 
l i m v ,  = - -  l i m u , =  g ' ~ .  
a ~  4~0 ~ ~o~0 

The last relation reflects the well-known fact that in the plane problem when v 0 > 
there is no radiation of waves by a uniformly moving source of constant amplitude. 

The energy losses are the sum of four contributions in the subcritical situation, two 
of which disappear in the supercritical situation 

4 g X' I Mo,l 2 <W) 
..=z.~ [oo - cgisgn (o~o + k/vo)Ich 2 [kih[ 

Here the denominator can also be converted to the form 

k,.vo + gh k~ch -2 Ik,.hl [ 
[Vo -- cg~ s g n  (O~o + k,vo) l = 1~~ - 22 

2 tke[ Io)o + k~,ol 

3. Internal Waves in a Waveguide with Solid Covers. In a stratified liquid between 
horizontal planes with a distribution of the buoyancy frequency N(z) the reaction to a small 
external action is described by Green's function with the Fourier transformation 

2 

G~,k (z, z ' )  = ~ ~"~"  (I,H, 0 v .  ( I k l ,  ~') 
2 , (~ + i~) 2 - ~,, 

Im Go, k (z,  z')  ; ~ 2  sgn o3 ~ tp. ( I k l ,  z), .p. (Ikl, =') ~ (~ --__ _ _ OJn) , 

n 

where the summation is carried out over wave modes with eigenvalues co n = COn( I kl ) and eigen- 
functions ~n(Ikl, z), which satisfy the equation, boundary conditions, and normalization con- 
dition 

( o~/az~ - k~ + k~ N~ ( ~ ) / ~ . 5  V.  ( I k l ,  ~) = 0,  
h 2 

q~, ( l k [ ,  

h i  

Perturbations of the vertical component of the velocity w and the pressure p can be expressed 
as follows in terms of the moving oscillating mass source causing them: 

l' (o~, k, z)  = - 

o G~,, (z ,  z ' ) ,  w (o~, k, z) = o~ 2 f a z ' m  (o~, k, z') o~--: 
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m (t ,  x ,  z )  = rno (x  - vt,  z )  cos oJot, 

m (o~, /~, z) = ztmo ( L  z) l~ (o~ - O~o - l, vo) + ~ (o~ + too - / a , o )  I. 

The average energy losses per unit time as before depend only on the imaginary part of the 
F o u r i e r  t r a n s f o r m  o f  G r e e n ' s  f u n c t i o n ,  c o n c e n t r a t e d  on t h e  d i s p e r s i o n  s u r f a c e  

<~0 = ~ <wo>, 
m 

n 

< wo> = dk do, ~-~ IMo,, I ~ ~ (~  - o,. (k)) ~ (~  - ~,o + ~"ol), 
0 

Mo. = - f d z m o ( k ,  z ) O ~ " ( ] k l ' z )  f oz - dx  dz mo (x, z) or.  exp ( - / k x ) .  
Oz 

The total losses are made up of the losses for the individual modes. 
tors which satisfy the equations 

m = o) , ( k )  > O, • ~ = mo + kvo, 

Waves with wave vec- 

make a nonzero contribution to the energy loss for the n-th wave mode. 

For certain simplest types of stratification, to which the uniform stratification (N = 
const) belongs, the dispersion curves of all the modes ~n = ~n (k) are convex with 82mn/Sk2 < 
0 and, consequently, can have two points of intersection with the straight line ~ = ~0 + kv0. 
Then, the solution of this system of equations for a fixed number n will be similar to those 
considered for discontinuous stratification. A graphical representation with a small change 
due to the frequency limitation m n < Nma x is, as before, more convenient. For each n-th mode 
four types of solution are possible, two of which (kln > k2n > 0)disappear for supercritical 
velocities v 0 > V,n, while the contribution to the mean losses due to radiation of waves of 
this mode can be represented in the form 

l 4 4 to,a I Mo.,I 2 

(w,,> = ~ ~ k~, Iv0 - q.~ sg. (~0 + ~,~0) 1 ' 

i . e . ,  a s  t h e  sum o f  f o u r  ( o r  two i n  t h e  s u p e r c r i t i c a l  c a s e )  w a v e s  o f  t h i s  mode w i t h  wave  num- 

b e r s  k n i .  

The  s e t  o f  c r i t i c a l  v e l o c i t i e s  V ,n  i s  d e t e r m i n e d  by  t h e  s o l u t i o n  o f  t h e  f o l l o w i n g  s y s t e m s  
o f  e q u a t i o n s  : 

o~, (k) 
o , . ( k ) = o ~ o + k v . . ,  c ~ . - - - = v  .... Ok 

All the critical velocities are finite. The order of the dispersion curves as the mode number 
changes implies the order of the critical velocities V,n > V,n+1. Finally, as the velocity 
of motion of the oscillating source decreases, it is possible for an even greater number of 

wave-forerunners to appear (with Cgn]k=kn > v0). 

However, these far from exhaust all possibilities. In many cases the stratification is 
such that the change in the group velocities Can with wave number is not monotonic. In addi- 
tion to the highest maximum for long waves (k 0) smaller maxima are possible for shorter 
waves. Their number may increase as the mode number increases. Over a certain range of the 
parameters v0, m0 an additional pair of wave solutions with positive wave vectors will be 
associated with each local maximum of the group velocity; one of these wave vectors corre- 
sponds to an additional wave-forerunner. Hence, there can also be more than two wave solu- 
tions for a fixed mode with positive k. A search for critical velocities both using the 
equations and graphically is complicated (there may be several of them even for each mode, 
according to the above discussion). An upper estimate remains simple. The general limita- 
tions on the phase and group velocities of the waves in a waveguide (the first is obtained 

from the comparison theorem [8]) 

~t2t ? + k2h2 ~ C~. ~ ~t2a 2 + k2h 2 

max , ! ~ i . .  i c" ~ . ~  

enable us to write 
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v . .  < c~.l~=o ~ .--7- 

The change in the convexity of the dispersion curves is typical for waveguides with two 
pronounced maxima of the buoyancy frequency [9]. However, in the case of certain density 
distributions with a single maximum of the buoyancy frequency, a nonmonotonic dependence of 
the group velocity on the wave number is possible [i0]. 

4 :  An Unbounded Uniformly Stratified Liquid. In this example, if there are no limita- 
tions on the stratification in the vertical direction, the spectrum of the waves will depend 
not on the discrete number of modes, but on a continuous parameter - the vertical component 
of the wave vector. The expression for the average energy loss in the plane problem is not 
the sum over the modes, but an integral over this component (an analysis of the perturbations 
in the spatial problem is given in [11]). 

In a medium with a constant buoyancy frequency the imaginary part of the Fourier trans- 
form of Green's function and the relation between the Fourier transforms of the pressure and 
the mass source have the form 

Im G (~, k) = - ~ sgn ~ ( J k  2 - N22~), 

p ( w ,  k) = iw (N 2 - ~2) G (o~,k) m (w, k). 

As before, the expression for the average energy losses of a uniformly moving oscillating 
source can be represented as follows: 

(141> = f ~d~ f dk lwI (N ~-~2) mo(k)I 2 ~ ( ~ 2 ~ - N 2 ~ ) ~ ( ~ -  t~  o + k ~ I ) "  
0 

Here, of the three integrations, due to the two 6-functions we can carry out two of these and 
abandon, for example, the integration over the vertical component in the general answer. In 
the special case of horizontal motion it is determined by the solutions of the following sys- 
tem of equations: 

oJ = N T , k = I k I , - ~o  • ~ = k~o- 

For a fixed vertical component k z the solution of this system is exactly the same as it was 
for discontinuous stratification, and is clearly illustrated in the same figure, changed by 
taking into account the limitation m < N. As previously the increase in the number of wave 
solutions from two to four is determined by the passage of the velocity of motion of the 
source through the critical value v,. The function k z is now the last, i.e., the angle of 
inclination of the waves to the horizontal. From the system of equations for the critical 
velocity 

it follows that 

kx #to k~ 

v . = ~  1 -  

For any velocity of motion of the oscillating source with an oscillation frequency 
~0 < N we can obtain radiated waves as long as desired, with respect to which the motion 
will be subcritical (v 0 < v,). Of course, when ~0 < N a pair of waves with positive com- 
ponents of k x and a small value of Ikzl will always be excited, and one of these will be 
a wave-forerunner. 

i. 

2. 

. 
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PROPAGATION OF A BOUNDARY DISTURBANCE IN A STRATIFIED GAS FOR 

ARBITRARY KNUDSEN NUMBER 

D. A. Vereshchagin, S. B. Leble, 
and A. K. Shchekin 

UDC 533.72:551.511 

Introduction. A systematic treatment of wave disturbances in rarefied gases should be 
based on the Boltzmann kinetic equation or its standard approximations [i, 2]. The purpose 
of the present paper is to use the kinetic equation to study the forced vibrations of a ver- 
tically stratified gas in a gravitational field for given types of excitation on the bound- 
aries. Defining the Knudsen number Kn of the problem as the ratio of the mean free path of 
the gas molecules to the scale of the inhomogeneities due to the propagating waves, we find 
that Kn increases with height because of the height dependence of the mean free path in the 
stratified gas. Hence it is required to determine the motion of the gas for arbitrary Kn. 

In many respects this problem is similar to the well-known problem of propagation of 
ultrasound in a uniform gas. Interest in the latter problem from the point of view of the 
kinetic theory of gases was stimulated by the work of Van Chan and Uhlenbeck [2]. Important 
results in this field have been obtained for the linearized Boltzman equation and for ap- 
proximate kinetic equations using analytic continuation of dispersion relations [3], the 
Wiener-Hopf method [4], reduction to a Riemann-Hilbert problem [5, 6], and numerical inte- 
gration along the characteristics [7]. These results suggest that the wave nature of dis- 
turbances persists in a gas with Kn ~ ;. In this case the phase velocity and absorption co- 
efficient of acoustic waves calculated with the help of the BGK kinetic equation are found 
to be in good agreement with experiment. The BGK equation can also be used to analyze the 
propagation of wave disturbances in a stratified gas. Physically, the stratification of the 
gas leads to internal waves, together with the usual acoustic waves. The dispersion relation 
for internal waves is quite different from the dispersion relation for acoustic waves and the 
study of kinetic effects on the propagation of internal waves is of interest in the physics 
of the upper atmosphere [8]. However, the presence of an external field and the stratifica- 
tion of the gas complicates the problem, since theresult is an equation with variable coef- 
ficients. Hence the usual methods of finding the solution for sound in a uniform gas are no 
longer applicable, since they rely on separation of Variables with the help of the Fourier 
transform. The method of integration along the characteristics has to be modified to take 
into account nonlinear characteristics. 

To describe the propagation of boundary disturbances in a stratified gas for arbitrary 
Knudsen number we reduce the integrodifferential BGK equation to a closed system of integral 
equations for the first five moments of the distribution function. A general integral kinetic 
equation including the boundary conditions on the surface of a body in a flowing gas was ob- 
tained earlier in [9]. This equation was solved in [i0] by transforming to a system of 
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